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Knots in Physical Systems

Knots in DNA strands

Tying a microtubule with optical twizzers
Knotted jets in accretion disks (MHD)
Strain on knot (MD)



Knots & Topological Constraints

e Knots happen
probability(no knot) ~ exp(—N/Np)
e Knots tighten (1" = 00)
n/N — 0 when N — o0
e Reduce size of chain (m = knot complexity)
R~ N"m™© a=v—1/3
e Reduce accessible phase space
e Large relaxation times
Treptation ™ N
e Weaken macromolecule

e Bio: affect chemistry, function



Granular Chains

Mechanical analog of bead-spring model

U({Rz}) = Vo Z 5(Rz — Rj) —+ 211)2 . (Rz — Ri—|—1)2

1#] 0
e Beads/rods interact via hard core repulsions
e Rods act as springs (nonlinear, dissipative)
o Inelastic collisions: bead-bead, bead-plate

e Vibrating plate supplies energy

e Athermal, nonequilibrium driving

Advantages

e Number of beads can be controlled

e Topological constraints: can be prepared,
observed directly



Vibrated Knot Experiment

o t = 0: trefoil knot placed at chain center
e Parameters

— Number of monomers: 30 < N < 270
— Minimal knot size: Ny = 15

e Driving conditions

— Frequency: v =13Hz
— Acceleration: T' = Aw?/g = 3.4

Only measurement: opening time ¢

1. Average opening time 7(N)?

2. Survival probability S(t, N)?
Distribution of opening times R(t, N)?



The Average Opening Time
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Opening time is diffusive




The Survival Probability

e S(t,N) Probability knot “alive” at time ¢
e R(t,N) Probability knot opens at time ¢

t
S(t,N)=1 —/ dt' R(t', N)
0
e S(t, N) obeys scaling

t
S(t,N)= F(z) Z:T(N)
1 —
0.8 |
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7 only relevant time scale




Theoretical Model

A Y X

Assumptions

e Knot = 3 exclusion points
e Points hop randomly
e Points move independently (no correlation)

e Points are equivalent (size = Ny/3)
3 Random Walk Model

e 1D walks with excluded volume interaction

e first point reaches boundary — knot opens



Diffusion in 3D

l<xi<xo<zz3<lN — Ny — O<z<y<z<l

%P(x,y, z,t) = V2P(a:,y, z, 1)

e Boundary conditions

Absorbing: P| _ =P| =0

Reflecting: (8, — 8,)P|s=y = (0, — 9.)P|,=. =0

e Initial conditions P‘t:0:5(x—:1:0)5(y—x0)5(z—a;'o)

e Survival probability

1 1 1
S3(t) :/ da:/ dy/ dz P(x,y,z,t)
0 x Y

3 walks in 1D = 1 walk in 3D




Product Solution

Product of 1D solutions
P(x,y,2,t) = 3!p(z, t)p(y, t)p(2,t)
Boundary conditions (absorbing only)
Plz=0 = plz=1=10
Initial conditions
pli=0 = 6(x — o)
Diffusion equation
pi(z,t) = Pra(, 1)

1 walk survival probability

1
s(t) = [ doplat
0
3 walks survival probability

Sa(t) = [s(t)]”



Why does this work?

-

Exchange identities of walkers when paths
Cross

Reduce interacting particle problem to
noninteracting particle problem

Eliminate complicated geometry
Reduced to one-dimensional problem

Diffusive opening times

(N — Ny)?
D

(t) ~ T 73 = 0.056213



The 1D problem

e Expansion in complete basis
plx,t) = Z an (o, t) sin(nmx)
n=1
e Dynamics p;(z,t) = ppa(x,t)

d
d—j = —n’m?a = ap(xo,t) = an(xo, O)e_”2772t

e Initial conditions p(z,t = 0) = §(z — x0)

an(20,0) = 2 / dr p(x,t = 0)sin(nmz) = 2sin(nrxg)

e The probability distribution

-—n2w2t

p(x, xg,t) = 2 Z sin(nmxg) sin(nmrx)e

n=1
e The survival probability s(t) = fol dx p(z,t)
S(t) = 4 Z 81n[7;7rx0]6_n27rzt

T
nodd




Experiment vs. Theory

e Work with scaling variable z =t/7 ((z) = 1)
e Combine different data sets (6000 pts)

e Fluctuations o2 = (22) — (2)?

Oexp = 0.62(1), Ttheory = 0.63047 (< 2%)
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Excellent quantitative agreement




The Exit Time Probability

Scaling function
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Large Exit Times

e Largest decay time dominates

o Large time tail is exponentially small

F(2) ~ e P? z>1

e Decay coefficient g = mn?7,

Bexp = 1.65(2)  Btheory = 1.66440

F(2)
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Small Exit Times

e Exponentially small (in 1/2) tail
1 — F(2) ~ z/2e72/2 z L1

e Decay coefficient a = 1/167,,

Qoxp = 1.2(1)  Opneory = 1.11184  (10%)
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Short Times

e Use scaling form S(t,N) ~ F (3&)
e Smallest exit timet=2L,1— 5~ 27N/2

2
1_F(N) ~ e N N -

1—F(z) ~ e %* 250

Analytic Calculation

o Laplace transform of exact solution

—qt i 1
s(q) = /dte s(t) = cosh(v/a/2)

o Steepest descent
S(C]) -~ 6—\/6/2 N /dte—qt—1/16t g — 00

e Allows calculation of correction

1 — F(2) ~ 21272/ 2 =0



Different knots (m =1, 3, 5, 7)
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Off-Center Initial Conditions

0
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e Survival probability: universal decay

S (t) =~ A(ajo)e_mﬂ%
o Eventually, initial conditions forgotten
e What is exit probability E(xzg)?

o What is exit time T'(x)?



The First Passage Probability (1 walk)

o Straightforward calculation

E(xo) = /Oozitaxp(x, t)‘$:1 — %Z (_1)n_1sin(

nmTo)

Lo
n

e Adjoint equation (discrete space)
1
En — §(En—1 +En—|—1) = En—l—l — 2En+En—1 =0
e Electrostatic problem (continuous space)

82

62330

E(ZE()) =0

e Boundary conditions

E(0)=0 E(1)=1

e [he gambler ruin problem

E(CC()) — X0



The First Passage Time (1 walk)

e Straightforward calculation

o0 4 sin(nmxg)
T(:co):/O dtt@xp(x,t)}lezgz 5

= —330(1—330)
nodd 2

e Adjoint equation (discrete space)

1 1
1, = §(Tn—1+Tn—|—1)+E — D(Tn—l—l_QTn_'_Tn—l) =—1

e Electrostatic problem (continuous space)
32

D
821‘0

T(I‘Q) = —1

e Boundary conditions

T(0) = T(1) = 0

e Solution

T(.CC()) — Ewo(l — ZEQ)



Derivation (continuum space)

e The Greens function G(x,x',t) = §(x — x')

0
DV"”G(x,x") = DV’G(x,x') = EG(X, x', t)

e Survival probability & exit time
S, 1) = /dxa(x,x’,t)
/ L > 0 /
T(x) = —/0 dtt—S(<,t)
e [he adjoint equation

0
DV T(x) = —D//dxdtt—v’zc(x,x’,t)

= //dxdtt—G(x x',t)

— / dt 1 a—QS(X 0

8 / o / /
_ / dt= S(x,t) = S(x, o) = S(x,0)

= —1



The First Passage Time (d walks)

e The exit probability

V2E(x,y,2) =0

e [he average exit time

VT (z,y,2) = —1

o Generally, d-sums

LS X (—1)k17 Ly sinfkymag) ﬁ sin[(2k; + 1)mxq)

E(zg) = <ﬁ)d§ y ooy !

2 d _ 2 .

d oo o) 1

T(x0) :%(f) > oY —

b =0 kgm0 21 (2R +1)% 5

d .
sin[(2k; + 1)mx()
11 (2k; + 1)

S. Redner, A guide to first passage processes (cambridge, 2001).



Predictions

T(%,), 9(Xo)

o Good agreement for S(t), Star(t), Sclose(t)
e Poor agreement for E(xq), T (xo)

o Current data insufficient (600pts)

Fluctuations diverge near boundary




Conclusions

e Knot governed by 3 exclusion points
o Exponential tails (large & small exit times)

e Macroscopic observables (¢, S(t)) reveals
details of a topological constraint

e Knot relaxation governed by number of
crossing points

e Athermal driving, yet, effective degrees of
freedom randomized (diffusive relaxation)

Outlook

o Different knot types

e Correlation between crossing points

Many possibilities with granular chains




Entropic Tightening
with Matthew Hastings, Zahir Daya, Robert Ecke

e Equilibrium (counting states) prediction

P(n) o< [n(N —n)] =%/

n/N — 0 when N — o0

e Observed under nonequilibrium driving

Role of entropy?




Johnathan Mcay B

My soul 1s an entangled knot
Upon a liquid vortex wrought

The secret of its untying

In four-dimensional space s lying

J. C. Maxwell



